728x90
import matplotlib.pyplot as plt
bream_length = [25.4, 26.3, 26.5, 29.0, 29.0, 29.7, 29.7, 30.0, 30.0, 30.7, 31.0, 31.0,
31.5, 32.0, 32.0, 32.0, 33.0, 33.0, 33.5, 33.5, 34.0, 34.0, 34.5, 35.0,
35.0, 35.0, 35.0, 36.0, 36.0, 37.0, 38.5, 38.5, 39.5, 41.0, 41.0]
bream_weight = [242.0, 290.0, 340.0, 363.0, 430.0, 450.0, 500.0, 390.0, 450.0, 500.0, 475.0, 500.0,
500.0, 340.0, 600.0, 600.0, 700.0, 700.0, 610.0, 650.0, 575.0, 685.0, 620.0, 680.0,
700.0, 725.0, 720.0, 714.0, 850.0, 1000.0, 920.0, 955.0, 925.0, 975.0, 950.0]
smelt_length = [9.8, 10.5, 10.6, 11.0, 11.2, 11.3, 11.8, 11.8, 12.0, 12.2, 12.4, 13.0, 14.3, 15.0]
smelt_weight = [6.7, 7.5, 7.0, 9.7, 9.8, 8.7, 10.0, 9.9, 9.8, 12.2, 13.4, 12.2, 19.7, 19.9]
plt.scatter(bream_length, bream_weight)
plt.scatter(smelt_length, smelt_weight)
plt.xlabel('length')
plt.ylabel('weight')
plt.show()
length = bream_length + smelt_length
weight = bream_weight + smelt_weight
fish_data = [[l, w] for l, w in zip(length, weight)]
print(fish_data)
fish_target = [1] * 35 + [0] * 14
print(fish_target)
from sklearn.neighbors import KNeighborsClassifier
kn = KNeighborsClassifier()
kn.fit(fish_data, fish_target)
kn.score(fish_data, fish_target)
"""### k-최근접 이웃 알고리즘"""
plt.scatter(bream_length, bream_weight)
plt.scatter(smelt_length, smelt_weight)
plt.scatter(30, 600, marker='^')
plt.xlabel('length')
plt.xlabel('weight')
plt.show()
kn.predict([[30,600]])
print(kn._fit_X)
print(kn._y)
"""기본 5로 설정된 근접이웃 알고리즘 단계를 49로 높임"""
""" 주변 49개 값을 확인하여 비슷한 것으로 보내기"""
kn49 = KNeighborsClassifier(n_neighbors=49)
kn49.fit(fish_data, fish_target)
kn49.score(fish_data, fish_target)
import matplotlib.pyplot as plt
-> pyplot을 plt로 정의
from sklearn.neighbors import KNeighborsClassifier
kn = KNeighborsClassifier()
-> 아래와 같이 사용 가능
import sklearn
kn = sklearn.neighbors.KNeighborsClassifier()
KNeighborsClassifier 메소드들
fit() : 학습 진행(훈련)
predict() : 어느 값에 근접한지 예측
score() : 알고리즘의 정확도(0~1)
pyplot : 산점도를 보여준다
scatter() : data 지정, 연속으로 사용하면 data가 추가됨
xlabel(), ylabel() : label 표시
show() : 그래프로 보여줌
Key-word
특성 : data를 표헌하는 성질
훈련 : data에서 규칙을 찾는 과정 : fit()
k-최근접 이웃 알고리즘 : 가장 간단한 머신러닝 알고리즘 중 하나 -> 규칙을 찾기보다는 전체 data를 memory에 가지고 있는 것이 전부라고 한다
정확도 = (정확히 맞힌 개수) / (전체 data 개수)
728x90
'Programming > Machine Learning' 카테고리의 다른 글
[혼공머신] 용어 03장 (0) | 2022.02.03 |
---|---|
[혼공머신] 04-1 로지스틱 회귀 (0) | 2022.01.23 |
[혼공머신] 03-3 특성공학과 규제 (0) | 2022.01.22 |
[혼공머신] 03-2 선형 회귀 (0) | 2022.01.16 |
[혼공머신] 용어 02장 (0) | 2022.01.16 |
[혼공머신] 03-1 k-최근접 이웃회귀 (0) | 2022.01.09 |
[혼공머신] 02-2 데이터 전처리(data preprocessing) (0) | 2022.01.08 |
[혼공머신] 용어 01장 (0) | 2022.01.05 |
[혼공머신] 02-1 훈련세트와 테스트 세트 (0) | 2022.01.03 |
Google Colaboratory (0) | 2022.01.01 |